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1.0 INTRODUCTION 

The objective of the proposed research is to develop predictive models characterizing the 

response due to deformation, diffusion and reaction in service environments for PMR-15 resin 

composites.  The principal investigator has developed a theoretical model from a fully 

thermodynamic standpoint to describe the response of polymeric composites that are subject to 

diffusion and chemical reactions due to hostile environmental conditions.  The thermodynamic 

framework is very general and has been used to describe the disparate and diverse response by a 

large class of materials:  viscoelastic fluids (Rajagopal and Srinivasa (2000), Krishnan and 

Rajagopal (2004)), inelasticity (Rajagopal and Srinivasa (1998)), crystallization of polymers 

(Rao and Rajagopal (2001), twinning (Rajagopal and Srinivasa (1997)), Kannan et al. (2002)), 

shape memory alloys (Rajagopal and Srinivasa (1999)), single crystal super alloys (Prasad et al. 

(2005), Prasad et al. (2006)), and viscoelastic solids (Kannan and Rajagopal (2004)).  There are 

two central ideas on which the framework is built.  The first is that when a body undergoes an 

entropy producing process, the underlying natural configuration" of the body (see Rajagopal 

(1995) for a discussion of natural configuration) usually changes and the second, the constitutive 

relation that describes the response of a body, from amongst a competing class of possible 

response functions is one that maximizes the rate at which entropy is produced.  In this work, 

using both these above ideas, a model is developed to describe the response of a viscoelastic 

polymeric solid due to its deformation when a fluid is diffusing through the solid, taking into 

account temperature effects.  Such a model can be used to describe, in addition to PMR-15 resin 

composite, a whole host of viscoelastic polymer composites due to hostile environmental 

conditions, namely high temperature and the diffusion of moisture through the body. 
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2.0 DEVELOPMENT OF A VISCOELASTIC SOLID MODEL WITH DEGRADATION 
DUE TO TEMPERATURE 

In this section, we shall first develop a model for the viscoelastic behavior of PMR-15.  This 
model also accounts for degradation due to high temperatures. 

2.1 Preliminaries 

Let  be the reference configuration and  denote the current configuration.  Then, the motion 
 is the one‐one mapping that assigns to each point , a point , at a time , i.e., 

  (1) 

Let  denote the natural configuration (stress‐free) configuration corresponding to .  This 
natural configuration is reached instantaneously from the current configuration, by the body, 
upon removal of a load.  The deformation gradient  is defined by 

  (2) 

Let  be the gradient of the mapping from  and let  be the gradient of mapping from 
 to  (see Figure 1).  Then, 

  (3) 

or 

  (4) 

We shall denote the left Cauchy‐Green stretch tensors 

  (5) 

We shall also define the velocity gradients 

  (6) 

with their symmetric parts by 

  (7) 

Also, we define 

  (8) 

where  is the trace operator for a second order tensor.  Now, 

  (9) 

where  is the time derivative of the second order tensor.  In addition, 
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where  is the time derivative of the second order tensor.  In addition, 

  (10) 

and similarly 

  (11) 

Hence, from (9) and (10), we have 

  (12) 

and so 

  (13) 

where  is the Oldroyd derivative.  The non‐isothermal reduced energy dissipation equation 

(Kannan and Rajagopal (2004)) is given by: 

  (14) 

where  is the Cauchy stress,  is the specific Helmoltz free energy,  is the density of 

viscoelastic solid,  is the temperature,  is the specific entropy,  is the heat flux,  is the rate 

of entropy production and  is the rate of dissipation.   

2.2 Constitutive assumptions and maximization of the rate of dissipation 

2.2.1 General results 

Now, we shall assume that the viscoelastic solid is isotropic and incompressible with the specific 

Helmoltz potential of the form 

  (15) 

Based on the assumption of isotropic elastic response, we choose  such that 

  (16) 

where  is the right stretch tensor in the polar decomposition of . 

We shall also assume that the total dissipation can be split additively as follows 

  (17) 

where  are the rates of mechanical dissipation and dissipation due to conduction 

respectively.  Now, we constitutively choose 

  (18) 

where k is the thermal conductivity; so that (17(b)) is automatically satisfied. 

Now, 
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  (19) 

and using (10), (11) along with (16) in (19) 

  (20) 

Also, we assume the mechanical rate of dissipation to be of the form 

  (21) 

On substituting (20) into (17(a)) 

  (22) 

We shall choose 

  (23) 

and define 

  (24) 

  (25) 

where ,  are the Lagrange multipliers.  Using (23)–(25) in (22) 

  (26) 
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From constraint of incompressibility, we have 

  (27) 

Since, RHS of Eqn.(26) does not depend on , using (27), 

  (28) 

where  is the Lagrange multiplier due to incompressibility, with 

  (29) 

which can be re‐written as 

  (30) 

using (27) and (28) . 

Now, following Rajagopal and Srinivasa (2000), we maximize the rate of dissipation  by 

varying  for fixed .  For this, we maximize the function 

  (31) 

where  are the Lagrange multipliers.  By setting, , we get 

  (32) 

On substituting (32) in (30) we get 

  (33) 

and so (32) with (25) becomes 

  (34) 

where  is the Lagrange multiplier due to the constraint of incompressibility. 

Finally, the constitutive relations for the viscoelastic solid are given by 

  (35) 

2.2.2 Specific case 

Specifically, we choose the stored energy as 

 (36) 
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where  are elastic constants,  is a reference temperature for the viscoelastic 

solid and the rate of dissipation as 

  (37) 

where  is the viscosity. 

Now, 

  (38) 

  (39) 

  (40) 

  (41) 

and the specific heat capacity  is 

  (42) 

Then, (35) reduces to 

  (43) 

where , .  From (43) 

  (44) 

and so by pre‐multiplying the above equation by  and taking the trace, we get 

  (45) 

Using (45) in (44), we arrive at the following evolution equation for the natural configuration 

 (46) 

This is the evolution equation of the natural configuration.  Thus, with the current choice of 

energy storage and rate of dissipation, we arrive at the following constitutive equations: 

  (47) 
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and 

 (48) 

along with 

  (49) 

The above model reduces to the Maxwell fluid‐ like model derived by Rajagopal and Srinivasa 

(2000) when  and . 

2.2.3 Application of Model 

We shall apply this model to a deformation that is homogeneous and in uniaxial 

compression/extension, given by 

  (50) 

The velocity gradient is given by 

  (51) 

We shall assume 

  (52) 

So, 

  (53) 

  (54) 

 

  (55) 

and 

  (56) 

Also, 

  (57) 
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which gives 

  (58) 

and 

  (59) 

Substituting (52), (54), (59) in (46) and for  

  (60) 

In general, we get the following evolution equation for the natural configuration 

 (61) 

Now, plugging (52) into (47) and using the fact that lateral surfaces are traction free 

  (62) 

2.2.4 Comparison with experimental creep data 

For the loading process, with known constant applied stress  and material properties, (62) was 

first solved for B(t).  Then, (60) was solved with initial condition .  For the 

unloading process,  was set to zero and  was evaluated using (62).  Then using the initial 

condition , where  is the time when unloading is started,  is the instantaneous 

elastic stretch,  during the unloading process is evaluated using (60).  All the calculations 

were done in Matlab using the “ode45” solver. 
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Figure 1.  Comparison of the model with experimental data for creep (Falcone and 

Ruggles‐Wrenn (2009)) of PMR‐15 at 288 .  

The parameter values used were , , , . 

The creep data from our model was compared to the experimental creep data of Falcone and 

Ruggles‐Wrenn (2009) for PMR‐15 at . „fminsearch‟ function (which uses 

Nedler‐Mead simplex method) was used to minimize the error defined by 

  (63) 

where  denotes the theoretical strain values,  denotes the experimental strain values, the 

suffixes ,  denote the values during loading and unloading processes respectively,  

is weight.  A weight of  was used since there are fewer data points for the unloading 

process.  The best‐fit values of the parameters were found to be , 

. 
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3.0 DIFFUSION OF A NEWTONIAN FLUID THROUGH A VISCOELASTIC SOLID 

In this section, we shall extend the model developed in the previous section to include diffusion 

of a Newtonian fluid (like moisture). 

3.1 Preliminaries 

Let us consider a mixture of a Newtonian fluid and a viscoelastic solid.  We shall also assume 

co-occupancy of the constituents i.e., at each point  in the mixture at some time , the two 

constituents exist together in a homogenized fashion and are capable of moving relative to each 

other.  We shall denote the quantities associated with the compressible fluid through the 

superscript  and with the superscript  for that of the solid.  Now, we shall define the motion  

for the ‐th constituent of the mixture through 

  (64) 

where  is the material point of the ‐th constituent in its reference configuration.  We shall 

assume that the mapping  is sufficiently smooth and invertible at each time .  The velocity 

associated with the ‐th constituent is defined as 

  (65) 

and the deformation gradient through 

  (66) 

The density  and the average velocity (also known as barycentric velocity)  of the mixture 

are defined by 

  (67) 

We define the following derivatives for any scalar quantity  by 

  (68) 

where 

  (69) 

Hence, 

  (70) 

and we shall also define the following 

  (71) 
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The velocity gradient for the ‐th component  and the velocity gradient for the total mixture 

 are defined by 

  (72) 

  (73) 

where , ,  are the specific internal energy, heat flux, radiant heating associated with the 

‐th component and  is the energy supplied to the ‐th constituent from the other 

constituents. 

Now, taking the scalar multiplication of Eqn. (78) and  and subtracting the resulting equation 

from Eqn. (82), we arrive at 

  (74) 

Now, using , where ,  are the Helmholtz potential and specific entropy of the 

‐th constituent, with  being the common temperature of the constituents at a point in the 

mixture, Eqn. (83) along with Eqn. (76) results in 

  (75) 

Now, using the fact that , we can establish the following result: 

  (76) 

We shall define 

  (77) 

Using the relation (85) in Eqn. (84) and summing over , we get 

  (78) 

Equation (87) is the balance of entropy with the rate of entropy production  being 

  (79) 
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We shall assume that the total entropy production can be additively split into entropy production 

due to thermal effects i.e., conduction ( ), and entropy production due to internal working and 

mixing ( ).  We shall require due to the second law of thermodynamics that each of these 

quantities be non‐negative.  This implies that 

  (80) 

  (81) 

We shall choose , so that (89) automatically satisfies.  Also, if we define 

the rate of dissipation , then 

  (82) 

Assuming 

  (83) 

Eqn. (91) can be re‐written as 

  (84) 

Now, 

  (85) 

where  is the average Helmoltz potential of the mixture. 

Finally, from eqn (94) and Eqn. (93), we arrive at 

  (86) 

Assuming that all the components have the same Helmholtz potential (95) reduces to 

  (87) 

3.2 Constitutive assumptions 

Let  denote the current configuration of the mixture and let ,  denote the reference 

configurations of the solid and the fluid respectively.  Also, let  denote the natural 

configuration of the viscoelastic solid (see Figure 2).  Now, if  is the gradient of the  
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Figure 2.  Constitutive Assumptions 

motion (usually known as deformation gradient)  and  is the gradient of the 

motion of the viscoelastic solid from  to , then 

  (88) 

We shall assume that the specific Helmholtz potential for the mixture is of the form 

  (89) 

And 

  (90) 

  (91) 
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  (92) 

where we have dropped the superscript  over  for convenience, and  is . 

Now, 

  (93) 

where  is the time derivative of the second order tensor.  In addition, 

  (94) 

and similarly 

  (95) 

Hence, from (102) and (103), we have 

  (96) 

Based on the assumption of isotropic elastic response, we choose  such that 

  (97) 

where  is the right stretch tensor in the polar decomposition of . 

Using (102), (103), (104), (106) in (101), we get 

  (98) 

  (99) 

Volume additivity constraint: 

  (100) 
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where , .  Also, we shall assume that the constituents are incompressible in their 

natural states, i.e., 

  (101) 

Eqn. (76) using (110) can be re‐written as 

  (102) 

which implies 

  (103) 

  (104) 

Eqn (113) can be re‐written as 

  (105) 

Again from (109), we have 

  (106) 

Hence, using (115) in (114), we arrive at 

  (107) 

where , is the velocity with which the fluid diffuses with respect to the solid. 

We shall also assume that the rate of entropy production is of the form 

  (108) 

Now (96) along with (80) reduces to 

  (109) 

Using (108) in (118), we get 

  (110) 

where 

  

  (111) 
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  (112) 

Eqn. (119) with the constraint (116) can be written as 

  (113) 

We shall further assume that the rate of dissipation can be additively split into the rate of 

dissipation due to mechanical working, rate of dissipation due to the fluid and the rate of 

dissipation due to diffusion of the fluid, with specific forms as follows: 

  (114) 

Then, from (123) and (122), we arrive at 

 (115) 

which can be re‐ written as 

  (116) 

using the fact that .  Since, the right hand side of (125) does not depend on 

,  and , we have 

  (117) 

  (118) 

  (119) 

and so (125) reduces to 

  (120) 

Now, we have 

  (121) 

where , .  From (110) and (130) and further assumption 

that there is no diffusion of mass from  to , we have 

  (122) 
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Next, we shall maximize the rate of dissipation  with (129) and (130) as constraints.  We shall 

maximize the auxillary function 

  (123) 

Now, 

  (124) 

Taking the scalar product of (133) with  and using (129), (131) 

  (125) 

Next, taking the trace of (133) 

  (126) 

The evolution equation for the natural configuration of the solid is given by 

  (127) 

We shall assume the following specific form for the specific Helmholtz potential of the mixture 

 

 (128) 

where  are elastic constants,  is a reference temperature for the viscoelastic 

solid 

Now, 

  (129) 

The internal energy  is given by 

  (130) 

and the specific heat capacity  is 

  (131) 

From (137) and (120) 
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  (132) 

and from (137) and (121), 

  (133) 

where , . 

We shall further assume that the rate of dissipation  is of the form 

  (134) 

then (126) becomes 

  (135) 

and (136) reduces to 

  (136) 

The final constitutive equations are 

  (137) 

where ,  with 

  (138) 

being the evolution equation of the natural configuration. 



19 

4.0 REFERENCES 

1. Falcone, C. M. and Ruggles-Wren, M. B. (2009) Rate dependence and short-term creep 

behavior of a thermoset polymer at elevated temperature.  Journal of Pressure Vessel 

Technology 131(1), 011403. 

2. Kannan, K. and K. R. Rajagopal (2004).  A Thermomechanical framework for the 

transition of a viscoelastic liquid to a viscoelastic solid.  Mathematics and Mechanics of 

Solids 9 (1), 37--59. 

3. Kannan, K., I. J. Rao, and K. R. Rajagopal (2002).  A thermomechanical framework for the 

glass transition phenomenon in certain polymers and its application to fiber spinning.  

Journal of Rheology 46, 977--999. 

4. Krishnan, J. M. and K. R. Rajagopal (2004).  Thermodynamic framework for the 

constitutive modeling of asphalt concrete:  Theory and applications.  Journal of materials 

in Civil Engineering 16 (2), 155--166. 

5. Prasad, S. C., K. R. Rajagopal, and I. J. Rao (2006).  A continuum model for the 

anisotropic creep of single crystal nickel-based superalloys.  Acta Materialia 54 (6), 1487-

1500. 

6. Prasad, S. C., I. J. Rao, and K. R. Rajagopal (2005).  A continuum model for the creep of 

single crystal nickel-base superalloys.  Acta Materialia 53 (3), 669--679. 

7. Rajagopal, K. R. (1995).  Multiple con_gurations in continuum mechanics.  Technical 

Report 6, Institute of Computational and Applied Mechanics, University of Pittsburgh. 

8. Rajagopal, K. R. and A. R. Srinivasa (1997).  Inelastic behavior of materials.  Part II:  

Energetics associated with discontinuous deformation twinning.  International Journal of 

Plasticity 13 (1), 1--35. 

9. Rajagopal, K. R. and A. R. Srinivasa (1998).  Mechanics of the inelastic behavior of 

materials part 1, theoretical underpinnings.  International Journal of Plasticity 14 (10), 

945--967. 

10. Rajagopal, K. R. and A. R. Srinivasa (1999).  On the thermomechanics of shape memory 

wires.  Zeitschrift fur Angewandte Mathematik und Physik (ZAMP) 50 (3), 459--496. 

11. Rajagopal, K. R. and A. R. Srinivasa (2000).  A thermodynamic frame work for rate type 

uid models.  Journal of Non-Newtonian Fluid Mechanics 88 (3), 207--227. 

12. Rao, I. J. and K. R. Rajagopal (2001).  A study of strain-induced crystallization of 

polymers.  International Journal of Solids and Structures 38 (6-7), 1149--1167. 

 


